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SUNKARY

The problem of allocating two typee of aircraft (boabers

and fighters) among three different air tasks (counter air,

air defense, and support of ground operations) in a multi-

strike campaign Is analyzed as a two-sided war game. It is

asv!ýaed that a bomber can be used in either the counter air or

ground support operations, while a fighter can be used in

either the air defense or ground support roles. That is,

bombers and fighters have one task-ground support-in common.

Optimal employment during the last strikes of the campaign

consists of a concentration of all resources on support of

ground operations. OCtimal employment during the early strikes

of the campaign requires randomization by both sides.
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ALLOCATION OF TWO TYPES OF AIRCRAFT
IN TACTICAL AIR WAR: A GALJ-THMORETIC ANALYSIS

1. INTRODUCTION

An important allocation problem associated with a tactical

air campaign is that of allocatin6 the tactical air forces among

the various air tasks in a cumpetitive environment. Taking

into account the enemy's possible allocations, we wish to

determine an optimal emloyment of tactical resources. Stated

in this form, this allocation problem is a problem in the

theory of games of strategy.

In i previous paper [1], we studied the employment of

tactical air forces in the varisus theater air tasks by iormu-

lating the problem as a zero-sum two-person game. It was

assumed there that both sides had one type of aircraft to be

allocated among three t-aaks; counter air, air defense, and

close support,.

The game formulated in the present paper assumes that

each side has two different types of aircraft to which we give

the generic names of bomber and fighter. A bomber can only be

used in e'ther the counter air or ground support roles, and

a fighter only in the air defense or ground support roles.

The introduction of two types of aircraf6 into the

tactical game yields substantially different and more complex

optiatll tactics even for campaigns of short duration. In (1]

it is shown that if the allocations ape restricted to counter

air and close support tasks, then both sides have optimal pure
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strategies; if a third task in added, then one side has an

optimal pure strategy r ." 2 other a mixed strategy. In

contrast, if two types of aircraft are to be ailocated imong

three tasks, then both sides may have optimal mixed strategies.

As an example of the complexity of Lhe last case, we shall

present the optimal tactics, i.e., the optimal eqployment of

aircraft, for a relatively short campaign.

2. FORMUIATION OF TACTICAL WAR GAME

The tactical air war game is viemed as a series of strikes,

or moves, each of which consists of s'zmuitaneous counter air,

air defense and ground support operations. These operations

are undertaken by each side in order to accomplish a given theater

mission or payoff.

Suppose that at the start of the campaign one side, which

we call Blue, has an air force consisting of B bomber" and

F fighters, while his opponent, Red has A bombers and 0

fighters. Bach bomber may be used on coianter air or ground

support missions. Rach fighter may be used on air defense or

ground support missions.

Let us now examine a strike in the campaign, say the

initial strike. 3uppose Blue dispatches x of his bombers on

counter air operations, and the remainder, B-- x, on ground

support operations. 3ame of these x oxambers, say rx of then.,

where 0 _ r _ 1, are dispatched against enemy bomber fields

and the rimainder, (1 - r)x, against enemy ?%Zbter fields.

Suppose that during this strike Mlhe also sends u of the P



fighters on air defense aiusioons and the remainder, F - u

fighters, on ground support operations. Hence B + F - x - u

Blue planes participate in ground support operations during

this initial strike.

Similarly, suppose that on the initial strike RMd allocates

Sbombers to counter air operations, and f - t bomberea t-.

ground support operations. Of these 4 bombers, let pt of them,

where 0 ý p S 1, be assigned to attack enemy bomber fields and

the remaLider, (1 - p)ý bombers, to attack enemy fighter fields.

"Suppose that Red also assigns ýL of the 0 fighters to air defense

missions and the remainder, 0 - p. fighter&,, to ground support

missions. The number of Red planes participating in ground

support operations during this initial strike is therefore

In making their allocations the players know the size of

thel- own and ..pponent's forces. Howev-', n*ither sidb knows

the allocation made by his opponent until after the strike is

completed.

let us nor describe the outcome of the above strike. The

fighters that Red allocates to air defense will reduce the

number of Blue bombers that penetrate to counter-air targets,

but will not afftct ground support operations. 7"he number of

att.cking planes that are prevented from reaching their targets

will be assumed to be proportional to 4., say c•, un.Less Blue's

attacking planes are saturated, i.e., if c4 exceeds x. The

constant c is called the air defense potential, as it measures
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the effectiveness of the air defense aircraft. We assume that

the Red fighters are unable to distinguish which of the Blue

mttacking bombers are destined for Red bomber bases and which

are desti.ned for Red fighter bases. The Interceptions are

assumed to be distributed uniformly at random among the attack-

ing aircraft. Thus, the number of Blue bombers penetrating

Red'a defense Is x- c au long ae cL. in not larger than x.

If cli in larger than x, no Blue bombers penetrate. Thus the

number of Blue bombers penetrating Red's defenses is given by

max (0, x - cV).

Of the penetrating bombers, r max (0, x - c4) will attack

Red bomber fields and (1 - r) max (0, x - cpL) will attack Red

fighter fields. Therefore the numbtr of Blue bombers attack-

ing Red bomber fields is

max[O, r(x- c4)], o r l,

and the number of Blue bombers attacking Red fighter fields is

Max [0, (1 - r)(x - c4))] 0 r Sz

The Blue bombers that penetrate to rarget destroy parked

enemy aircraft by dropping bombs on the Red airfields. Let

us assume that each of Blue's penetrating bombers can destroy

b enemy bombers or b2 enemy fighters, and let us further a-sume

that all of Red's aircraft are at risk at the time of a strike.

Then the numner of Red bco=ers destroyed by Blue on taoe initial

istrike is:

Am {i b, max (0, r(x- c- )l
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and the number of Red fighters destroyed is

m _in {0. b2 max [0, (1 - r)(x - cL)]}

We shall assume that the losses the Red air force suffers

from accidents and ground defenses are small, and will be

neglected in our analysis. We further assume that planes

used in air defense and ground support suffer no losses, and

that Red bombers failing to penetrate the Blue air defense

return to base. That is to say, we assume that losses suf-

fered in the air battle are negligible compared to the other

losses, and that air defense aircraft prevent attacking planes

from successfully delivering their bombs without neceasarily

destroying the bombers. Thus, we see that during the initial

strike Red's bomber force is reduced to

and Red's fighter force is reduced to

0 =max {0, '-- b2 max [0, (1 - r)(x-- cii)]}

In exactly the same manner we can analyze the effect of

this initial strike on Blue's aircraft inventories. At the

end of the initial strike, the number of bombers available

to Blue is

B, -max t0, B--di max (0, p(C--eu)]},

and the number of fighters is

F1 max{0, F- d 2 max (0, (1 - p)( -eu)]},
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where e, di and d2 hzve similar meanfngs as c, bi and b2.

respectively.

Blue now has Bi bombers and P1 fighters and Red has 15,

bombers and 01 fighters that they can allocate for the second

strike. This strike will result In new inventories B2 , P2, 28, 42

for the third strike. This process is repeated for the dura-

tion of the campaign, which consists of a predetermined number

of strikes.

3. PAYOFF

In our model the function of the tactical air force is

to assist the ground forces, and the results will vary with

the number of planes allocated to ground support operations.

On the other hand, the enemy also can aid his ground forces

by allocating aircraft to ground support operstions. Thus

some of the assistance might "cancel out." We shall assume

that the assistance offered to Blue ground forces, or payoff

to Blue, on a given strike can be measured by the difference

between Blue ground support sorties and Red ground support

sorties, namely

(B + P - x - u) - (• + - - -).

Implicit here is the assumption that bombers and fighters are

equally effective in the ground sipport role. The payoff, M,

to Blue for the entire campaign of N strikes is the sum of

these scores for each of the N strikes, or
N

M u [ (B +F - )-( )].
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The problem faced by each side Is now apparent. For

example, Blue would like to allocate a large number of planes

to ground support missions and thereby increase the payoff at

a given move, yet he would like to destroy the Red air force

by moans of counter air operations in order to ensure that

Red will not be able to mount any ground support sorties in

subsequent strikes. Further, If Blue does not provide for

air defence he may suffer severe losses to his own air force

if Red elects to mount a large counter air strike. Each player

has to take the future as well as the possibilities open to

his opponent into account.

4. PARTICUTAR PARAMETER VALUES

From the description of the game and the definition of

the payoff function, it is clear that tho optimal tactics will

depend on the values of the constants b,, b2 , c, e, d1 , d 2 as

well as on the magnitude of the initial inventories, which are

B and F for Blue and f and 0 for Red. Since our main purpose

in this paper is to illustrate how the optimal allocations of

two types of aircraft vary w~th the size of the initial in,-

ventories, we shall assign particular values to the six con-

stants. For computational convenience we shall let b1 . b2

- c m e - dl = d2 - 1.

The inventory of Blue planes at the end of a strike now

becomes
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B. Ma fO, B -max 0, p( - u)*

F max {o, F - max 0, (1 - p)€ - u)]} ,

and the inventory of Red planes becomes

= max {0, 0 - max [0, (1 - r)¢x-}

Finally we assume that at the start of the campaign, the

fighter strength of the two air forces are equal, that is

F - 0. To facilitate the analysis of the problem let us take

F - 0- 1 at the start of the campaign; this merely means that

we are changing our unit of measurement from the individual

airplane to the total fighter force at the start of the cam-

paign.

Although we have formulated the game for an arbitrary

number of strikes, we shall present the optimal tactics for

campaigns of three strikes. The complete mathematical proofs

of these results are given in [2). However, the technique used

to derive the results is sketched in the Appendix, together with

an outline of the method of proof. A precise mathematical

formulation of the game in normal form is also given in the

Appendix.

5. OPTIMAL TACTICS - EQUAL STRENGTH

We begin by describing the optimal tactics for the case

in which Red and Blue initially have the same strengths, that

is, when B - • and F - - 1. Further, we shall restrict
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ourselves to a nampaign of three strikes.

First consider the initial move of the game. The nature

of the optimal tactic depends on the bomber strength. Let us

denote the value of' the common bomber strength by k; i.e.,

B - - k. Then the optimal tactics at the first move are as

follows.

Optimal Tactics at Initial Strike

If k > 2, then each side uses all of its bombers on

counter air and all of its fighters on air defense. Of the

bombers assigned to counter air targets, the fraction assigned

to enemy bomber flelds is k/(k + 1), with 1 - k/(k + 1) of the

bombers assigned to enemy fighter fields.

If 1 < k < 2, then each side must bluff, i.e., randomize,

over three tactics. Each side sends all bombers on counter

air and all fighters on air defense with probability (k - 1)/2.

Each side sends all bombers on counter air and all fighters on

ground support with probability (2 - k)/2. Each side sends

all bombers on ground support and all fighters on air defense

with probability 1/2. Of the bombers assigned to counter air

targets, the fraction assigned to bomber fields is k/(k + 1),

with the rest going against fighter fields.

If k < 1 each side must again bluff, but now only over

two choices. This time, the tactic cP all bombers on counter

air and all fighters on air defense is chosen with probability

one-half and the tactic of all bombers and all fighters on

ground support is chosen also with probability one-half. Again,

of the bombers allocated to counter air, the fraction assigned
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to enemy bomber fields is k/(k + 1), with the rest attacking

fighter fields.

Ciet Tactics for Last Two Moves

The optimal tactics for the last two moves of thle game

are the same for each player, and consist of concentrating

all resources on support of ground operations,

The interesting feature of the optimal tactics, is that

allthough the strengths of the two sides are the same, both players

must randomize, or bluff, for an appreciable range of initial

condltiona. This is quite different from the optimal tactics

in the correspondting situation when we have only one type of

aircraft capable of performing any type of mission. In the

latter case, when the two sides are of equal strength, each.

side has a pure strategy, and theie is no need to bluff.

6. OPTLMAL TACTICS - UNEQUAL BOMBER STRENG(THS

We Mhall now drop the assumption that Red and Blue have

equal bomber forces at the stArt of the campaign. The assump-

tion tha; F w - 1 still holds. Since th Affectiveress of

the Red and Blue aircraft are the same, to describe the optimal

tactics, we can restrict ourselves to the situation in which

the F-lue bomber force Is initially larger th-an or equal to

he Red bomber force. That ir B 2 P. If the converse is true,

nariely, 8 > B, the optimal tartics are obtained from the case

B 2 B by interchanging the r•oles of Blue and Red.

in order to describe the optimal tactics, it is necessary

to considl-r several cases, according to the difference between



Blue and Red bomber strengths at the start of the campaign.

We therefore define

m-B-•

The nature of the optimal tactic will depend on the relative

strengths of Red and Blue. Each possible combination of

initial Blue and Red bomber strengths is given by a pair of

numbers (B, P), and hence can be represented by a point in

the (B, 0) plane with B > 0. Figure 1 presents a decomposition

of the (B, 0) plane into nine regions. We shall describe the

optimal tactics at the initial move for each region.

(2timal Tactics at Initial Move

The optimal allocations of aircraft to the various tasks

at the initial mov•e is given in Table 1. Of the Blue bombers

sent against counter air targets, the fraction sent against

bomber fields is 0/(p + 1), and the fraction sent against

fighter fields iz 1/(t + 1). Of the Red bombers sent against

conter air targets, the fraction assigned to bomber fields

is B/(B + 1) and the fraction assigned to fighter fields is

l/(B + 1).

Optimal Tactics During Last Two Mo*v;es

The optimal allocation for each side during the last two

moves is to assigm all aircraft to ground support operations.
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Table I

VALUE OF GAME AND OPTIMAL CHOICES FOH INITIAL MOVE

Region of Blue Optimal Hed Optimal
B, D ) Plane Choice Choice
See Fig. 1) Value Choice Choice

No. Description of Game .(x, u) Prob. (€,, Prob.

1 0 ml (B, 13) 1j3,B)1 1

11(0, 0) (0, 0)

1m (1I, o) 0 (3, 0) 2-8
( 0) 1 10

1 • 13 (P0,0) (0,)

I1 1

1 ~~ + 1(03, 0) (01, 1)

M(1B, 0)1 (0, 1)

__ 2•fl(2-.. (0

S7 m+(m-- S-2)(o) m (-, 0):. < •1 •m 2t2-m B )2•m • ) 2(2-m r--7r
2m (0, 1) 1(, () 1

1 m<:

0 (B, 1) 1)1

3m + + 1 (13- 0 )
o0 • (0, 1) •

o (B, 1) l

I _< 2 4m + (13, 0-- 1 _0_ 1)
B



Table 1--Continued

Region of Blue Optimal Red OptimalJ B, 1) Plane Choice Choice

S" Value Choice Choice
No. Description of Game (x. u) Prob. , Prob.

I B 2 (0, 1) 1 (0, 1) B-1)

4m (B,0')

1 1

3 Mg
8 O4m (B, •.) 1 (I•, I) 1

Sm •(•, a) +9 2 .<s(p, o) I-

• 0
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7. DISCUSSION OF OPTIMAL TACTICS

That portion of the (B, 0) plane for which 0 - m ý 3/2

can be thought of as being the set of initial conditions for

which the opponents are about equal in strength. For, in the

part of the plane where 0 < m _ 3/2, one can say that "both

players do the same thing," if by doing the "same thing" is

meant randomizing over the same number of choices. In some

of the regions in the strip 0 e m , 3/2, namely Regions 1, 7,

and 8, the similarity of the strategies of the two players is

even more marked. These regions have segments of the line

m - 0 as part of their boundary and the character of the

optimal strategies on these segments is preserved throughout

the regions. In fact, in these regions, both players have

the same strategies, Just as they do on the line m w 0. In

Region 8, each player uses all his bombers to attack counter

air targets and all his fighters on air defense. In Region

7, each player randomizes over the following three tactics:

all bombers to attack and all fighters on defense, all bombers

to attack and all fighters on ground support, all bombers to

ground support and all fighters to air defense. In Region 1

each player either goes "all out" on offense and defense,

x - B, u - 0 for Blue, and E - f, L - B for Red, or goes "all

out" for ground support operations by choosing x - u - t - g- 0,

each tactic being chosen with probability 1/2. Since in

Region 1 the bomber strength for each player is less than the

opponent's fighter strength, there is no need to use all of

the fighter foi-ce on air defense. Therefore, only enough fighters



P-1914
16

needed to maa-ch the largest possible number of incoming bombers

are allocated to air defense. It should also be pcinted out that

Region 8 is the only regi "n where both players have pure optimal

tactics.

Th1iat portion of the (B, 0) plane lyinig above the line

m - 3/2, can be thought of constituting the set of initial

conditions for which Bluc Is stronger than Red. If m > 3/2,

Blue has a pure optimal tactic and Red must randomize.

Finally, we call attention to a curious phenomenon in

Region 3. It is the only region in which the game value is

not a linear function of B and 0.
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Appendix

1. MATHEMATICAL FORMULATION OF GAME

Let the moves be numbered from the end of the game; i.e.,

the n--th move means n moves to the end of the game. The

players' allocations on the n-th move determin.a the state

variables for the (n-l)-st move as follows:

-1- max [0o, Bn - Pn a (0 to - un)]

(1n1 - max [o, Fn - (i - Pn) max (0o, - )]

Or_-max [o, -1 -n max (0o, Xn- )]

nl - max [0, O- (1- rn) m (0, x- ma)].

For the N-move game, the payoff to Blue is given by

(2) L• [(Bn + Fn' - -• - n) - (On + On - tn - )].
n-1

It is assumed that each player knows the manner in which the

game proceeds; namely each player has the information expressed

by equations (1). It is further assumed that at each stage

of the game both players know the state variables and the

entire past history of thn play. That is, at the n-th move

both players know N, %. 1N' N, 0N and x., Ui, ri, ý.i ii, Pi

for i - N, n - 1, ... , n + 2, n + 1. Since they also know

equations (1) it follows that at the n-th move they know

Bit Fi' t Pi for i - N, N - 1, ... , n + 1, n.
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The pure strategies of the game in normal form will now

be defined inductively oe, the number of moves in the game.

First, a strategy for Blue in a one-move game is a choice of

a point X1 - (xI, u1 , r,) in the cube 0 xi 5 I' - 0 ' u1 5 F,

0 5 rI 5 1. Similarly a strategy for Red Is a choice of a point

Y1 (E1p ýL1' pl) in the cube 0.S (I S AIR 0 S i1 .S ¢1' 0 S P1 5 1.

Let eN be a strategy for Blue in an N-move game; oN, of course,

is a function of %," P,0 'O N,. T han (N+l)-novo game, at the

(N+1)-st move Blue chooses a point X,1+ - (xN+I, uN+l, rN+1)

in the cube N+1 defined by

o S x N+i BS +l o 05 Uý 1  -< PN+l' 0 0 rN+lS 1,

and simultaneously Red chooses a ooint YN+1 "N+IL' 1 N+1' 61+,l)

In the cube AN+1 defined by

o 5 FN+l -< ON+l' oS 4N+l 5 %+, 0 ' + 1.

These choices yield state variables %0 N ONO ON by equaticno

(1). A strategy a N+l for Blue in the N+l-move game in then

defined as a choice XN,+ in DN+l and a function AN that aaaoo--

iates to each point (XN+l' YN+I) in the product space DN+I AZ4+l

a strategy aN in the N-move game. Thus a N+ can be written as

aN+l - (XN+ll AN) "

Similarly a strategy T N+l for Red in the (N+l)-inovo game In

defined as a choice YN+I and'a function #, that associates

with each (XN+I, yN+I) a strategy -N in the N-move game.
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Thus -,+1 can be written as

,r+l+" (YN+11' %N)

Mixed strategies for the players can now be defined in a

similar manner. For a game of one move a mixed strategy for

Blue is a probability distribution 01 over tho cube DI, and

a mixed strategy for Red Is aeprobability distribution H1 over

the cube A,. Suppose now that mixed strategies for games of

length N have been defined. Let GN be a mixed strategy for

Blue in an N-move game. A mixed strategy ON+l in a game or

N+1 moves is a probability distribution gN+I over the cube

N+, and a runction XN that associates to each (X,+i, ¥N+1)

a mixed otrategy 01: in the N-nove Came. Thus the mixed strategy

in the (N+1)-move game can be written as

Mixed strategies HN+1 ror Red are defined similarly by a die-

tribution h N+l or N,+, and a functiun *N' and can be written

as

"N+1- (h 4÷.' *N)"

2. SUPFICIENT CONDITIONS •OR OPTIMAL STRATEGIS

Suppose that in the game of letigth N there exist atrategies

0; for Blue and 4 for Red with the following propertles,

(i) If Blue plays 0 and Red playa HN the

expectation H(0,,- H;) exists.
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(ii) For all Red pure strategies TN, E(GN, N)

exists, and

X GN

(iii) For all Blue pure strategies N, E(cN, H*)
exists, and

ECY, ; < E(GN, H;*)
In this event the game is said to have a value

VN - VN(BN, FN, O, 11N) given by

VN(BNS FN' ON' %)~ - E(GNP H;N);

iN Is said to be an optimal strategy for Blue and HN is said

to be an optimal strategy for Red. The value, as indicated

by the notation, is a function of the initial conditions

%NI FN, IN' "N

Define

LN+1(XN+l' YN+l) - B+1 + FN+l - 'N+1- uN+l - 'N+I

+ EN+l + LN+l

and

• 'N+1(XN+l' YN+l) - N+l(XN+l' YN+l) + VN(N' FNI, ON' O)'

where B%, FN, PON h are obtained from BN+,, FN+l •IN+l' "N +1

by means of (1) and the choices (XN+I' YN+I)' We can now

state a Lemma that enables u3 to solve the game inductively.

Lemma 1. Let the game of length N have value

"•N(BN, FN, NI, ON), with optimal strategies GN and HN for Blue
0
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and Red, respectively. Let g+ be a distribution in D,÷1 and

hN+1 a diastributi: £ on AN+, such that

(3 fN1XNl N+.1 )dg+l IfMN1S+(XN+ll Y' ldNd
for all YN+I'

for all 1 N+l.

Then the game of length N+1 has value

VN+l(%+l' PN+l' ON+l' "N+l'" ffM+1(XN+.l' YN+lNd+.lu+l'

and the optimal strategies are

GN+l - (- N+ IN) for Blue, H,+i - (h*+l H) for Red.

The proof of this lemma is the same as that given for the

analogous result in (1] and therefore will not be repeated here.

3. SOLUTION FOR N - 1, 2

For N - 1, an examination of the payoff (2) shows that

both Blue and Red have optimal pure strategies consisting of

the choice": x1 - u - 0 for Blue, and El n ,i w 0 for Red.

The choices of rI and p1 are clearly arbitrary in this case.

The value of the game in this instance is V1 - B. + F1 - 0ti - 1.

It follows from Lemma 1 that for N - 2 it suffices to

consider

M2 (X2 ' Y2 ) 2 B + P2 - 27- "2 - - u 2 + + 2 +

[B + ,'l - , - •
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ft means of equations (1), the quantity in square brackets can

be expressed in terms of quantities involving the subecript 2.

Whern the coeffi#ients of the quantities x 2 , u2 Y, '2 are then

examined, it is seen that the optimal choice for Blue is

x2 =u2 - 0, r 2 arbitrary, and the optimal choice for Red is

- 92 - 0, P2 arbitrary. The value of the two-move game

is V2 - 2(2 + P2- 12 - "2)"

4. SOLUTION POR N - 3

It follows frum Lemma 1 that for N - 3 it suffices to

consider the game with payoff

M 3 (1 3 , Y3 ) - B3 + F3 " 03 - '3 - - u 3 + F-3 + 13 +

2[B2 + P2 - 2 - ].

It can oe shown that since the optimal choices for i - 1, 2 are

x,- u - 0 " - 0, then the optimal choice of r 3 is

S*3 and the optimal choice of p- is BV (B3 + F3).

The rest of the proof consists of verifying that the strategies

given in Table 1, do indeed satisfy (3) and (4). We note here

that since we first determine the optimal r 3 and P3 1 we can

now take X3 - (x 3 , u 3 ), Y3 - (ý3s P3) in (3) and (4). Thj

verification process, although rather long and tedious, is

fairly straightforward. it is presented in [2].

A more difficult problem than that of verifying, is that of

guessing the optimal strategies, or stated in another way, that

of selecting the candidates for verification. In the case of

equal initial bomber strengths the following procedure was used.



Mhe trial assumption was first made that the optimal strategies

would consist of step functions with at most a finite nuzaber

of Jumps and that these jumps would occur at extreme points

of the strategy spaces. A finite matrix game 4as then set up

wi~h payoff M3 (" 3 , Y3 ) and strategies chosen from the extreme

points of the strategy spaces D and A. The solution of the

resulting matrix game was then determined, and the optimal

strategies found for the matrix game were tested for optimality

in the full game by substituting them in (3) and (4). If k < 1,

however, it is clear from heuristic grounds that some of -he

extreme points are dominated by other boundary points. For

example, from the structure of the game it is clear that if

k < 1, then (k, 1) wasters some of Blue's fighters and (k, k)

should dominate (k, 1). The matrix game was therefore expended

in this case to include such atrategies.

In the case of unequal initial bomber strengths the method

used to guezs the optimal strategies was a combination of the

met~hod used in the symmetric case, namely, setting up a finite

matrix game, and wnat miguit be described as "contagion and

continuity." That is, clues as to the nature of the optimal

strategies were obtained from the knowledge of the solution in

cont1guous regions, and these were used to ruess the optimal

strategler or to modify the approprlate matrix games. This

process was especially useul. when one cuald dctermine the value

o•f the game jrn a region by continuity from knowleuge of the

vaiues in adjacent regions.
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